cAMP increases Ca2+-dependent exocytosis through both PKA and Epac2 in mouse melanotrophs from pituitary tissue slices.
نویسندگان
چکیده
Cyclic AMP regulates Ca(2+)-dependent exocytosis through a classical protein kinase A (PKA)-dependent and an alternative cAMP-guanine nucleotide exchange factor (GEF)/Epac-dependent pathway in many secretory cells. Although increased cAMP is believed to double secretory output in isolated pituitary cells, the direct target(s) for cAMP action and a detailed and high-time resolved analysis of the effect of intracellular cAMP levels on the secretory activity in melanotrophs are still lacking. We investigated the effect of 200 microM cAMP on the kinetics of secretory vesicle depletion in mouse melanotrophs from fresh pituitary tissue slices. The whole-cell patch-clamp technique was used to depolarize melanotrophs and increase the cytosolic Ca(2+) concentration ([Ca(2+)](i)). Exogenous cAMP elicited an about twofold increase in cumulative membrane capacitance change and approximately 34% increase of high-voltage activated Ca(2+) channel amplitude. cAMP-dependent mechanisms did not affect [Ca(2+)](i), since the application of forskolin failed to change [Ca(2+)](i) in melanotrophs, a phenomenon readily observed in anterior lobe. Depolarization-induced secretion resulted in two distinct kinetic components: a linear and a threshold component, both stimulated by cAMP. The linear component (ATP-independent) probably represented the exocytosis of the release-ready vesicles, whereas the threshold component was assigned to the exocytosis of secretory vesicles that required ATP-dependent reaction(s) and > 800 nM [Ca(2+)](i). The linear component was modulated by 8-pCPT-2Me-cAMP (Epac agonist), while either H-89 (PKA inhibitor) or Rp-cAMPS (the competitive antagonist of cAMP binding to PKA) completely prevented the action of cAMP on the threshold component. In line with this, 6-Phe-cAMP, (PKA agonist), increased the threshold component. From our study, we suggest that the stimulation of cAMP production by application of oestrogen, as found in pregnant mice, increases the efficacy of the hormonal output through both PKA and cAMP-GEFII/Epac2-dependent mechanisms.
منابع مشابه
Rab3a Is Critical for Trapping Alpha-MSH Granules in the High Ca2+-Affinity Pool by Preventing Constitutive Exocytosis
Rab3a is a small GTPase of the Rab3 subfamily that acts during late stages of Ca²⁺-regulated exocytosis. Previous functional analysis in pituitary melanotrophs described Rab3a as a positive regulator of Ca²⁺-dependent exocytosis. However, the precise role of the Rab3a isoform on the kinetics and intracellular [Ca²⁺] sensitivity of regulated exocytosis, which may affect the availability of two m...
متن کاملPhospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that ...
متن کاملPhosphatidylinositol-4,5-bisphosphate-dependent facilitation of the ATP-dependent secretory activity in mouse pituitary cells.
Phosphatidylinositol-4, 5-bisphosphate [PI(4,5)P(2)] has been implicated in the priming of large dense-core vesicles in many secretory cells; however, its role in the Ca(2+)-dependent secretory activity in pituitary cells remains elusive. We assessed the effect of elevated intracellular PI(4,5)P(2) on the kinetics of Ca(2+)-dependent exocytosis, using a whole-cell patch-clamp technique in wild-...
متن کاملGLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose in...
متن کاملInteraction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells.
OBJECTIVE Glucagon-like peptide-1 (GLP-1) rescues insulin secretory deficiency in type 2 diabetes partly via cAMP actions on exchange protein directly activated by cAMP (Epac2) and protein kinase A (PKA)-activated Rab3A-interacting molecule 2 (Rim2). We had reported that haplodeficient Munc13-1(+/-) mouse islet beta-cells exhibited reduced insulin secretion, causing glucose intolerance. Munc13-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 567 Pt 3 شماره
صفحات -
تاریخ انتشار 2005